Vol.7, Issue 11, November 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

MAGIC LABLING ON HUMAN CHAIN GRAPH

¹K.Anitha, ²B. Selvam

¹Department of Mathematics, Sri Sairam Engineering College, Chennai – 600 044, India ²Department of Mathematics, S.I.V.E.T. College, Gowrivakkam, Chennai – 600 073, India

Abstract: In this paper, we investigate Z_3 - vertex magic total labeling, Z_3 - edge magic total labeling, Z_4 -bi magic labeling, total magic cordial labeling and n-edge magic labeling for human chain graph.

AMS Subject classification: 05C78

Key words: Human chain, Magic, Total magic, Z₃- vertex, Z₄-bi magic

1. Introduction

Let G= HC_{n,m}(p,q), n \in N, m \geq 3 be a Human chain graph and it is a simple, finite and undirected graph with p= 2mn+n+1 vertices and q=2mn+2n edges. For a summary on various labeling see the Dynamic survey of graph labeling by Gallian [1]. Magic labeling was introduced by Sedlacek in 1963 [3,4]. The original concept of total edge magic graph is due to Kotzig and Rosa [2].We have referred Z₃- vertex magic total labeling and Z₃- edge magic total labeling which has been extracted from various articles [5,7]. The concept of Human chain graph was introduced by K.Anitha and B.Selvam[6]. In this paper, we investigate Z₃- vertex magic total, Z₃- edge magic total, Z₄-bi magic, total magic cordial labeling and n-edge magic labeling of Human chain graph.

2. Preliminaries

In this section, we provide some basic definitions which needed to this paper.

Definition 2.1 Z₃-Vertex magic total labeling : A graph G(V,E) is said to admit Z₃-vertex magic total labeling if f: $V \cup E \rightarrow A^*$ where $A^* = Z_3$ -[0] such that the induced map f* on V defined by $f^*(v_i) = \{f(v_i)+\sum f(e)\} \pmod{3} = k$, a constant where e is the edge incident at v_i . A graph which admits Z₃- vertex magic total labeling is called Z₃- vertex magic total graph.

Definition 2.2 Z₃-edge magic total labeling : A graph G(V,E) is said to admit Z₃- edge magic total labeling if f: $V \cup E \rightarrow A^*$ where $A^* = Z_3$ -[0] such that the induced map f* on E defined by $f^*(v_iv_j) = \{f(v_i)+f(v_j)+f(v_i v_j)\} \pmod{3} = k$, a constant for all edges $v_i v_j \in E$. A graph which admits Z₃- edge magic total labeling is called Z₃- edge magic total graph. **Definition 2.3 Z₄-bi magic labeling :** A graph G(V,E) is said to admit Z₄- bi magic labeling if there exists a function f: $E \rightarrow \{1,2,3\}$ such that the induced map f* on V defined

by $f^*(v_i) = \sum f(e) \pmod{4} = k_1 \text{ or } k_2$, a constant $e = v_i v_j \in E$. **Definition 2.4 Total magic cordial labeling :** A graph G(V,E) is said to admit total magic

cordial labeling if $f:V\cup E \to \{0,1\}$ such that (i) $\{f(x)+f(y)+f(xy)\}\pmod{2}$ is constant for all edges $xy \in E$. (ii) for all i, $j \in \{0,1\}$, $|\{m_i(f) + n_i(f)\} - \{m_j(f) + n_j(f)\}| \le 1, (i \ne j)$, where $m_i(f) = \{e \in E/f(e)=i\}$ and $n_i(f) = \{v \in V/f(v)=i\}$. A graph which admits total magic cordial labeling is called total magic cordial.

Definition 2.5 n-edge magic labeling : Let G(V,E) be a graph. Let $f: V \rightarrow \{-1, n + 1\}$ and $f^*:E \rightarrow \{n\}$ such that for all $uv \in E$, $f^*(uv) = f(u) + f(v) = n$, then the labeling is called n-edge magic labeling.

Vol.7, Issue 11, November 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Definition 2.6 Human chain graph:

A human chain graph $HC_{n,m}(p,q)$ is obtained a path $u_1, u_2, ..., u_{2n+1}$, $n \in N$ by joining a cycle of length $m(C_m)$ and Y-tree Y_{m+1} , $m \ge 3$ to each u_{2i} for $1 \le i \le n$. The vertices of C_m and Y-tree Y_{m+1} are $v_1, v_2, ..., v_{(m-1)n}$ and $w_1, w_2, ..., w_{mn}$ respectively. **Example:1** ($HC_{2,3}$)

Structural properties of HC_{n,m}

1. The vertex set of HC_{n,m} = { u_i , v_j , $w_k/1 \le i \le 2n+1$, $1 \le j \le (m-1)n$, $1 \le k \le mn$ }.

2. The total number of vertices of $HC_{n,m} = |V| = 2mn+n+1$.

3. The edge of set of $HC_{n,m} = |E| \{u_i | u_{i+1} / 1 \le i \le 2n\} \cup$

 $\{ u_{2i} w_{m(i-1)+1}; u_{2i} v_{(m-1)i}; u_{2i} v_{(m-1)(i-1)+1}; w_{mi} w_{mi-2}/1 \le i \le n \} \cup \{ w_{mi+j} w_{mi+j+1}; v_{(m-1)i+i} v_{(m-i)+i+1}/0 \le i \le n-1, 1 \le j \le m-2 \}.$

4. The total number of edges of $HC_{n,m} = |E| = 2mn+2n$.

5. The maximum degree of $HC_{n,m} = \Delta = 5$.

6. The minimum degree of $HC_{n,m} = \delta = 1$.

3. MAIN RESULTS

Algorithm 3.1

Procedure: (Z₃-Vertex magic total labeling of HC_{n,m})

```
Input: V \leftarrow {u_1, u_2, ..., u_{2n+1}, v_1, v_2, ..., v_{(m-1)n}, w_1, w_2, ..., w_{mn}}
```

```
E \leftarrow \{ e_1, e_2, \dots, e_{2mn+2n} \}
```

if n≥1

```
u_1, u_{2n+1} \leftarrow 2
for i= 1 to(m-1)n do
v_i \leftarrow 1
end for
for i= 1 to mn do
w_i \leftarrow 1
end for
for i= 1 to (2n-1) do
u_{i+1} \leftarrow 1
end for
for i= 1 to 2n do
```

Vol.7, Issue 11, November 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$\begin{array}{l} u_{i}u_{i+1} \leftarrow 1 \\ end \ for \\ for \ i=1 \ to \ n \ do \\ u_{2i} \ v_{(m-1)i} \leftarrow 1 \\ u_{2i} \ v_{(m-1)(i-1)+1} \leftarrow 1 \\ u_{2i} \ w_{m(i-1)+1} \leftarrow 1 \\ w_{mi} \ w_{mi-2} \leftarrow 2 \\ end \ for \\ for \ i=0 \ to \ (n-1) \ do \\ \ j=1 \ to \ (m-2) \ do \\ v_{(m-1)i+j} \ v_{(m-1)i+j+1} \leftarrow 1 \\ w_{(mi+j)} \ w_{(mi+j+1)} \leftarrow 2 \\ end \ for \end{array}$$

end if

end procedure

Theorem 3.1: For m \geq 3 and n \geq 1, the human chain graph admits Z_3 – vertex magic total labeling.

Proof: Let $HC_{n,m}(p,q)$ be a human chain graph with p=2mn+n+1 vertices and q=2mn+2n edges. Using algorithm 3.1, the 2mn+n+1 vertices and 2mn+2n edges are labeled by defining a function $f: V \cup E \rightarrow \{1,2\}$. The induced function is defined by $f^*: V \rightarrow N \cup \{0\}$, such that $f^*(v_i) = \{f(v_i)+\sum f(e)\} \pmod{3} = k$, a constant for all edges $v_i v_j \in E$. The total weight of each vertex is $f^*(v) = \{f(v)+\sum f(uv)\} \pmod{3} = 3$ or $6 \pmod{3} = 0$, a constant for all edges $uv \in E$. Thus the induced function yields the weight '0' to all the vertices. Therefore, for $m \ge 3$ and $n \ge 1$, the human chain graph admits Z_3 – vertex magic total labeling. **Example 2** : Z_3 – vertex magic total labeling for $HC_{4,3}$ **Algorithm 3.2**

Procedure: (Z₃-edge magic total labeling of $HC_{n,m}$) Input: V \leftarrow { $u_1, u_2, \dots, u_{2n+1}, v_1, v_2, \dots, v_{(m-1)n}, w_1, w_2, \dots, w_{mn}$ } $E \leftarrow$ { $e_1, e_2, \dots, e_{2mn+2n}$ }

if $n \ge 1$, $m \ge 3$

Vol.7, Issue 11, November 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

```
for i = 1 to (2n+1) do
               u_i \leftarrow 1
end for
     for i = 1 to(m-1)n do
               v_i \leftarrow 1
end for
     for i = 1 to mn do
               w_i \leftarrow 1
end for
     for i = 1 to n do
             u_{2i} v_{(m-1)i} \leftarrow 2
            u_{2i} v_{(m-1)(i-1)+1} \leftarrow 2
            u_{2i} W_{m(i-1)+1} \leftarrow 2
            w_{mi} w_{mi-2} \leftarrow 2
     end for
     for i = 1 to 2n do
           u_i u_{i+1} \leftarrow 2
     end for
     for i=0 to (n-1) do
               j=1 to (m-2) do
              v_{(m-1)i+i}v_{(m-1)i+i+1} \leftarrow 2
              w_{(mi+i)} w_{(mi+i+1)} \leftarrow 2
    end for
```

end if

end procedure

Theorem 3.2: For m \geq 3 and n \geq 1, the human chain graph admits Z₃ – edge magic total labeling.

Proof: Let $HC_{n,m}(p,q)$ be a human chain graph with p=2mn+n+1 vertices and q=2mn+2n edges. Using algorithm 3.2, the 2mn+n+1 vertices and 2mn+2n edges are labeled by defining a function f: $V \cup E \rightarrow \{1,2\}$. The induced function is defined by $f^*:E \rightarrow N \cup \{0\}$, such that $f^*(uv) = \{f(u)+f(v)+f(uv)\} \pmod{3} = k$. The induced function yields the labels for as follows. $f^*(uv) = \{f(u)+f(v)+f(uv)\} = 1+1+2=4 \pmod{3}=1$. Therefore, for $m \ge 3$ and $n \ge 1$, the human chain graph admits Z_3 – edge magic total labeling.

Vol.7, Issue 11, November 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Example 3 : Z_3 – edge magic total labeling for $HC_{3,6}$

Algorithm 3.3

Procedure: (Z₄-bi magic lebeling of HC_{n,m}) **Input:** V \leftarrow { $u_1, u_2, ..., u_{2n+1}, v_1, v_2, ..., v_{(m-1)n}, w_1, w_2, ..., w_{mn}$ } $E \leftarrow \{ e_1, e_2, ..., e_{2mn+2n} \}$ if $n \ge 1$, $m \ge 3$ $u_1 u_2 \leftarrow 3$ $u_2 v_1 \leftarrow 2$ $u_2 v_{m-1} \leftarrow 2$ for i = 1 to n do $w_{mi} w_{mi-2} \leftarrow 3$ $w_{mi-2} w_{mi-1} \leftarrow 3$ $u_{2i} u_{2i+1} \leftarrow 3$ $u_{2i} w_{m(i-1)+1} \leftarrow 2$ end for for i=0 to (n-1) do j=1 to m-2 do $v_{(m\text{-}1)i+j}\,v_{(m\text{-}i)+j+1} \leftarrow 2$ end for end if if n>1, m≥3 for i = 2 to n do $u_{2i} v_{(m-1)i} \leftarrow 1$ $u_{2i}\,v_{(m\text{-}1)(i\text{-}1)+1} \leftarrow 1$ end for for i = 1 to (n-1) do $u_{2i+1}\,u_{2i+2} \leftarrow \! 1$ end for

end if

if n>1, m>3 for i= 0 to (n-1)

Vol.7, Issue 11, November 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$j=1 \text{ to } \left\lfloor \frac{m-2}{2} \right\rfloor \text{ do}$$

$$w_{mi+2j} w_{mi+2j-1} \leftarrow 1$$
end for

end if if n>1.

for i= 0 to (n-1)
j= 1 to
$$\left\lfloor \frac{m-3}{2} \right\rfloor$$
 do
w_{mi+2j+1} w_{mi+2j} ← 2
end for

end if

if n=1, m>3

for i= 1 to
$$\left\lfloor \frac{m-2}{2} \right\rfloor$$
 do
w_{2i-1} w_{2i} \leftarrow 1

end for

end if

if n=1, m>4

for i= 1 to
$$\left\lfloor \frac{m}{3} \right\rfloor$$
 do
 $w_{2i+1} w_{2i} \leftarrow 2$
end for

end if

end procedure

Theorem 3.3: For m ≥ 3 and n ≥ 1 , the human chain graph admits Z_4 – bi magic labeling. **Proof:** Let HC_{n,m}(p,q) be a human chain graph with p= 2mn+n+1 vertices and q= 2mn+2n edges. Using algorithm 3.3, the 2mn+2n edges are labeled by defining a function f: $E \rightarrow$ {1,2,3} such that the induced function is defined by f*:V \rightarrow {0,1,2,3}defined by f^{*}(v)= { $\sum f(uv)(mod 4)/u \in N(v)$ }=k₁ or k₂, constants. Thus all the weight of the vertices are either 0 or 3. Therefore, for m ≥ 3 and n ≥ 1 , the human chain graph admits Z₄ – bi magic labeling.

Example 4 : Z_4 – bi magic labeling for HC_{1,3}

Vol.7, Issue 11, November2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Algorithm 3.4 Procedure: (Total Magic Cordial labeling of HC_{n,m})

Input: V \leftarrow { $u_1, u_2, ..., u_{2n+1}, v_1, v_2, ..., v_{(m-1)n}, w_1, w_2, ..., w_{mn}$ }

```
E \leftarrow \{ e_1, e_2, ..., e_{2mn+2n} \}
if n \ge 1, m \ge 3
    for i= 1 to \left\lfloor \frac{n+2}{2} \right\rfloor do
               u_{4i-3} \leftarrow 1
     end for
           for i= 1 to \left\lfloor \frac{n+1}{2} \right\rfloor do
                      u_{4i-1} \leftarrow 0
                      u_{4i-2}u_{4i-1} \leftarrow 1
                      u_{4i-3}u_{4i-2} \leftarrow 1
     end for
            for i = 1 to n do
              u_{2i} \leftarrow 0
              w_{mi} \leftarrow 0
                     w_{mi-1} \leftarrow 1
               u_{2i} w_{m(i-1)+1} \leftarrow 0
               u_{2i}\,v_{(m-1)(i-1)+1} \leftarrow 1
       end for
end if
if m is odd
                for i = 1 to n do
               w_{mi} w_{mi-2} \leftarrow 0
               w_{mi-1} w_{mi-2} \leftarrow 1
         end for
end if
 if m is even
     for i = 1 to n do
     w_{mi} w_{mi-2} \leftarrow 1
     w_{mi-1} w_{mi-2} \leftarrow 0
    end for
    for i= 1 to \left|\frac{n}{2}\right| do
             u_{4i-1}u_{4i} \leftarrow 0
             u_{4i} u_{4i+1} \leftarrow l
     end for
     for i = 1 to n do
```

Vol.7, Issue 11, November 2018,

end end

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

1

end

end

Vol.7,Issue 11, November2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

end for

end if end procedure

Theorem 3.4 : For $m \ge 3$ and $n \ge 1$, the human chain graph admits total magic cordial labeling.

Proof: Let $HC_{n,m}(p,q)$ be a human chain graph with p=2mn+n+1 vertices and q=2mn+2n edges. Using algorithm 3.4, the 2mn+n+1 vertices and 2mn+2n edges are labeled by defining a function f: $V \cup E \rightarrow \{0,1\}$

Case (i) If n is odd, the number of vertices labeled with '0' and '1' is mn+(n+1)/2 respectively and the number of edges labeled with '0' and '1' is mn+n respectively. From this we conclude that, the number of vertices and edges labeled with '0' and with '1' is mn+(n+1)/2+mn+n=2mn+(3n/2)+(1/2) which differ by at most one.

Case (ii) If n is even, the number of vertices labeled with '0' is mn+(n/2)+1 and labeled with '1' is mn+(n/2) and the number of edges labeled with '0' and '1' is mn+n respectively. From this we conclude that, the number of vertices and edges labeled with '0' is mn+(n/2)+1+mn+n=2mn+(3n/2)+1 and with '1' is mn+(n/2)+mn+n=2mn+(3n/2) which differ by at most one.

Thus the 2mn+n+1 vertices and 2mn+2n edges are labeled such that the number of vertices labeled with '0' and '1' differ by atmost one. The induced function is defined by $f^*:E \rightarrow N \cup \{0\}$, such that $f^*(uv) = \{f(u)+f(v)+f(uv)\}(mod2) = k$. Thus we have $f^*(uv) = \{f(u)+f(v)+f(uv)\}(mod2)=0+0+0$ (or)1+1+0(mod2)=0, which is a constant. Hence for m≥3 and n≥1, the human chain graph admits total magic cordial labeling.

Example 5: Total magic cordial labeling for HC_{4,3}

Algorithm 3.5

Vol.7,Issue 11, November2018, ISSN: 2320-0294 Impact Factor: 6.765 Journal Homepage: <u>http://www.ijesm.co.in</u>, Email: ijesmj@gmail.com Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Procedure: (n-edge magic labeling of $HC_{n,m}$, m =2n+2, n≥1)

```
Input: V \leftarrow {u_1, u_2, ..., u_{2n+1}, v_1, v_2, ..., v_{(m-1)n}, w_1, w_2, ..., w_{mn}}
          E \leftarrow \{ e_1, e_2, \dots, e_{2mn+2n} \}
if n \ge 1, m \ge 4
        for i = 1 to (n+1) do
          u_{2i-1} \leftarrow -1
   end for
        for i = 1 to n do
          \mathbf{u}_{2i} \leftarrow n + 1
   end for
        for i=0 to (n-1) do
                 j=1 to (m/2) do
                 W_{mi+2i-1} \leftarrow -1
   end for
        for i=0 to (n-1) do
                  j = 1 to (m-2)/2 do
                 w_{mi+2i} \leftarrow n + l
   end for
        for i = 1 to n
          w_{mi} \leftarrow -1
        end for
        for i = 1 to n do
                  j = 1 to (m/2) do
                   v_{(m-1)i-m+2j} \leftarrow -1
        end for
        for i = 1 to n do
                  j=1 to (m-2)/2 do
                   v_{(m-1)i-m+2j+1} \leftarrow n + l
        end for
end if
end procedure
```

Theorem 3.5 : For m \ge 3 and n \ge 1, the human chain graph admits n– edge magic labeling. **Proof:** Let HC_{n,m}(p,q) be a human chain graph with p= 2mn+n+1 vertices and q= 2mn+2n edges. Using algorithm 3.5, the 2mn+n+1 vertices are labeled by defining a function f: V \rightarrow {-1, n+1/n \in N}and 2mn+2n edges are labeled by defining a function f*:E \rightarrow N,such that f^{*}(uv)= {f(u)+f(v)} =-1+n-1= n, a constant for all uv \in E. Therefore, for m \ge 3 and n \ge 1, the human chain graph admits n - edge magic labeling.

4. Conclusion: In this paper, we have constructed algorithms for labeling the vertices and edges and also proved the existence of Z_3 – vertex magic total, Z_3 -edge magic total, Z_4 -bi magic, total magic cordial and n- edge magic labeling for human chain graph.

Vol.7, Issue 11, November 2018,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: <u>http://www.ijesm.co.in</u>, Email: ijesmj@gmail.com Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

5. References

- Gallian J.A, "A Dynamic Survey of graph labeling", the Electronic Journal of combinatories, 19, # DS6 (2012).
- 2. A.Kotzig and A.Rosa (1970), Magic valuations of finite graphs, Canad.math.Bull

13,

451-461.

- 3. J.Sedlacek, On magic graphs, math. Slov, 26(1976), 329-335.
- 4. J.Sedlacek, Some properties of magic graphs, In Graphs, Hypergraph and Bloc syst.proc.symp.comb.Anal, Zielona Gora,(1976), 247-253.
- B.Selvam, K.Thirusangu and P.P.Ulaganathan, "Z₃- vertex magic total labeling and Z₃- edge magic total labeling in extended duplicate graph of twig T_m" 2012.
- 6. K.Anitha, B.Selvam, Human chain graph, International journal of Engineering, Science and Mathematics, Vol.7 Issue 8, August 2018.
- K.Sudha, K.Thirusangu and S.Bala "Magicness in Extended Duplicate Graphs" International Research journal of Engineering and Technology", 2017, Volume 4 issue 3.